

目次 CONTENTS

- 会社概要
- 2 品質マネジメントシステム
- ③ デザイン及びキャパシティ
- 4 主要取引先

① 会社概要

会社概要

江西盛世創業科技株式会社 Jiangxi GT Display Co.,Ltd

江西盛世創業科技有限公司はスマートホーム、家電、産業用コンピュータ、POS端末、PDA、車載デジタルオーディオ、ドライブレコーダー、医療などの液晶ディスプレイ装置の研究開発から製造、

販売までを手掛けるOEM受託製造会社です。

2014年11月3日に設立、資本金は300万米ドル 住所: 江西省九江市徳安県高新区燕溝河路6号 盛世創業光電産業園

❖ 工業団地面積: 33,000 平方メートル

❖ 土地、建物:自己所有

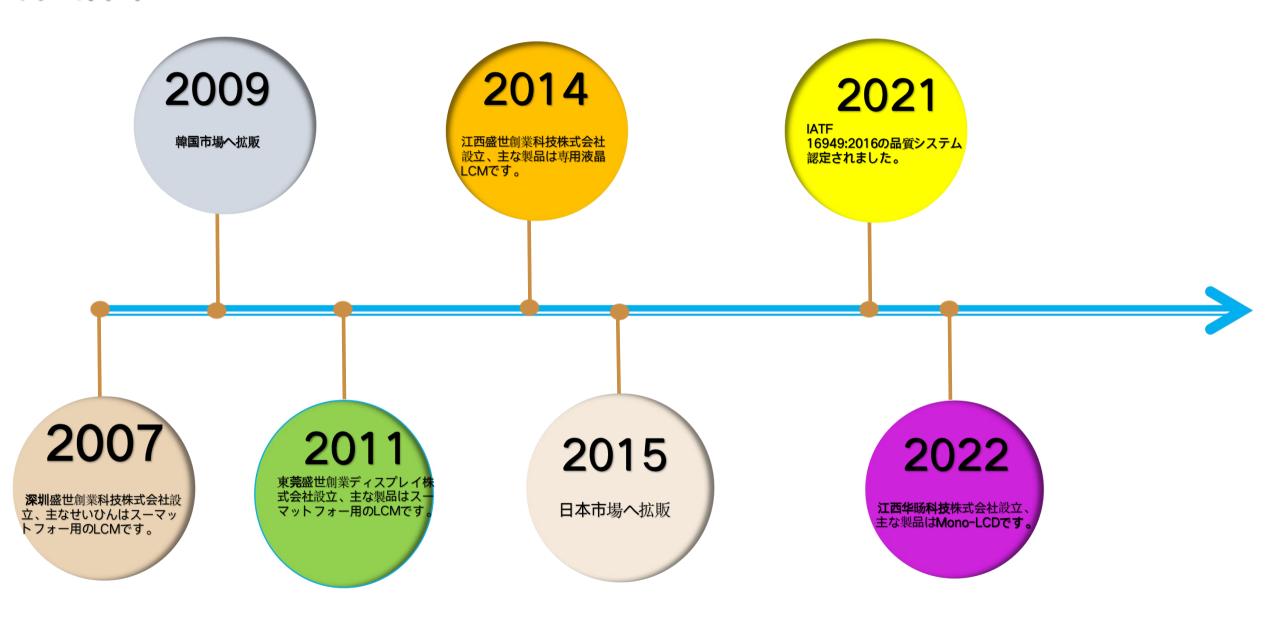
❖ 建築面積: 30,000 平方メートル

事業内容:

液晶ディスプレイモジュール、タッチパネルモジュール の研究開発、製造及び販売。

江西华旸科技株式会社 Jiangxi Hydisplay Co.,Ltd

資本金: 30万米ドル

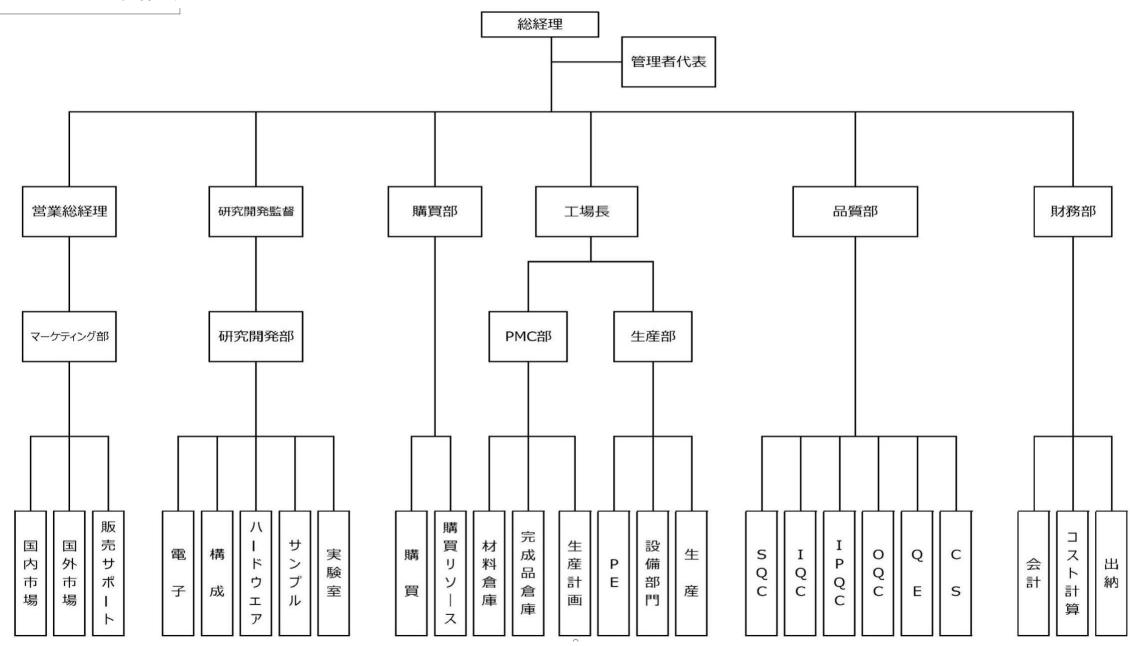

住所:中国江西省九江市徳安県高新区燕溝河路6号 盛世創業光電産業園

生產拠点:中国江西省九江市徳安県高新区燕溝河路6号 盛世創業光電産業園

投資会社: 江西盛世創業科技有限公司


メイン事業: mono-LCD&LCM&GG-RTPの研究開発、製造及び販売 mono-LCDラインを投資し、生産ラインを立上げています。 主にSTN / HTN / VA / TN / LCD-SHUTTER / MIRROR-LCD を生産しています。

会社沿革



工場の交通状況

工場位置は江西省南昌市昌北国際空港から55キロ(車で45分)、九江廬山空港から38キロ(40分)、徳安新幹線駅、共青城新幹線駅から10キロ(車で20分)、新幹線で深セン及び上海に直行することができる。

会社組織図

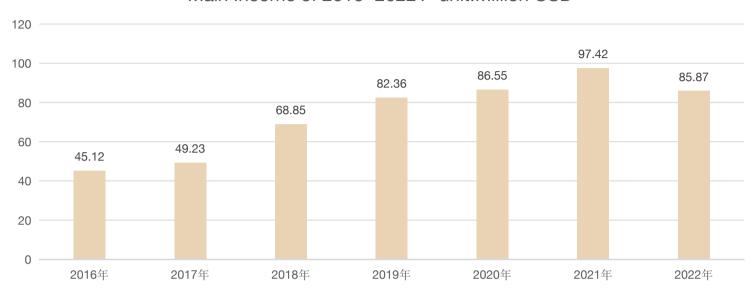
研究開発部人員配置

研究開発ディレクター: 1人、

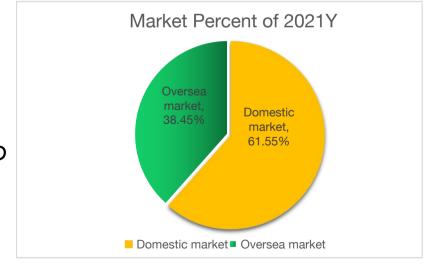
電子エンジニア: 5人、深セン事務室3人、江西工場2人、

構造エンジニア: 5人、深セン事務室3人、江西工場2人、

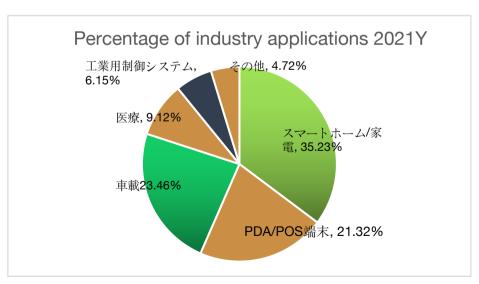
ハードウェアエンジニア: 2人、深センオフィス2人、


サンプル作成エンジニア: 2人、江西工場2人、

実験室エンジニア: 1人、江西工場1人、


◆売り上げ状況

2014~2022年の売り上げ

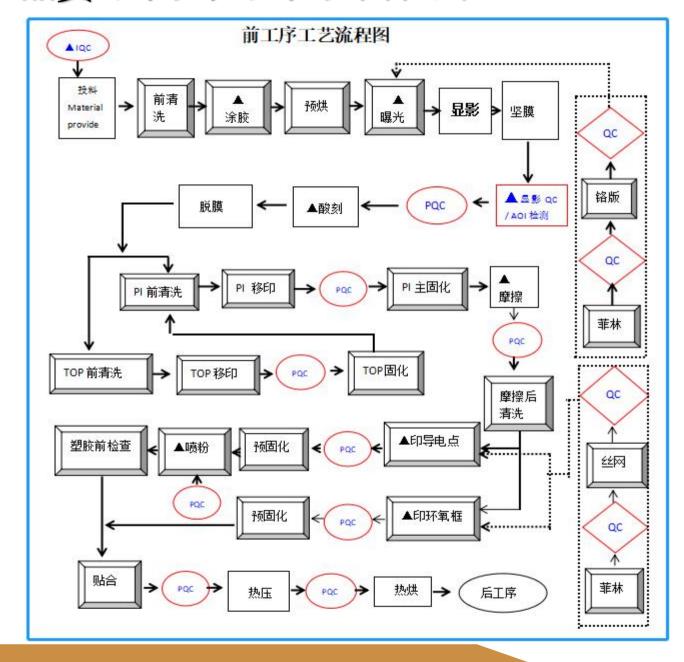

Main Income of 2016~2022Y unit:Million USD

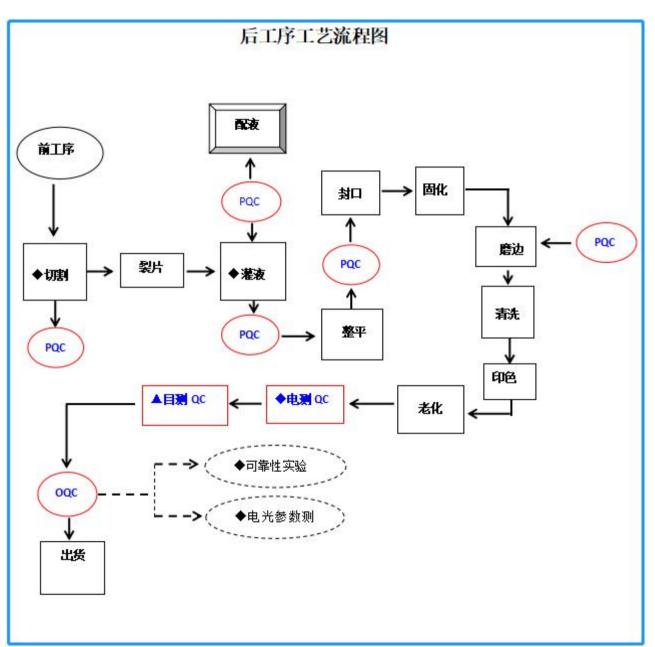
2022年 中国及び海外の シェア率

2022年 液晶ディスプレイ の業界シェア率

②品質マネジメントシステム

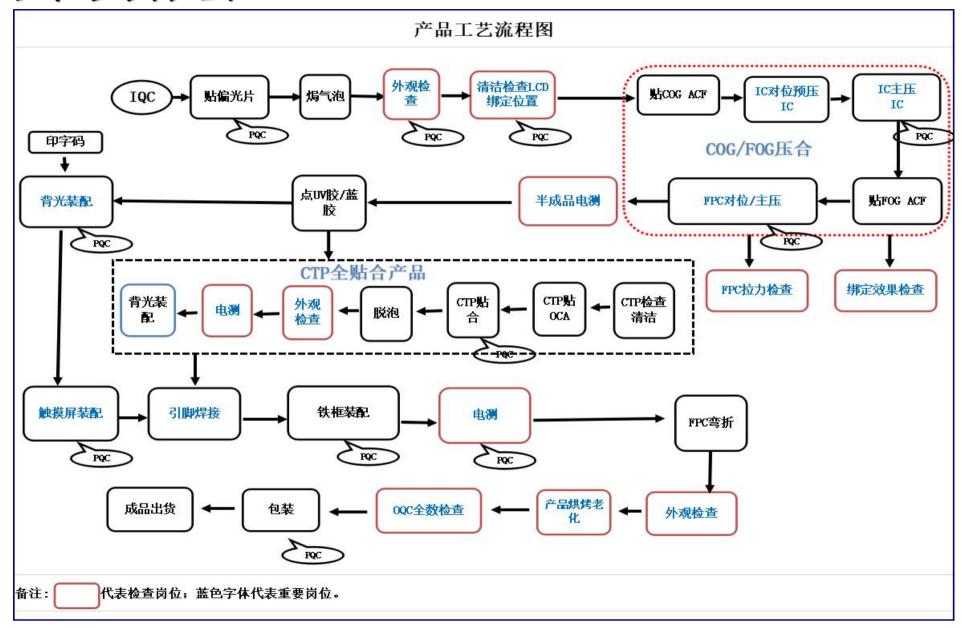
品質マネジメントシステム




ISO: 9001:2015 ISO: 14001:2015

ISO: 45001:2018 IATF: 16949:2016

TN/STN


品質マネジメントシステム

LCM

品質マネジメントシステム

信賴性管理項目

番号	テスト項目	サンプル (試作品)		量産品			備考	
田夕		全面貼り付け	TPフレームつけ	TP無し	全面貼り付け	TPフレームつけ	TP無し	個名
(1)	冷熱サイクル衝撃試験	•	•	•	•	•	•	
(2)	高温高湿動作	•	•	•	•	•	•	
(3)	高温動作	•	•	•	•	•	•	
(4)	低温動作	•	•	•	•	•	•	
(5)	高温保存	•	•	•	•	•	•	
(6)	低温保存	•	•	•	•	•	•	
(7)	静電気試験	•	•	•	•	•	•	量製品は30 K <u>/</u> 1回
(8)	電磁振動試験	•	•	•	•	•	•	重表的は30 K/1日 の実験を行う必 要がある。CTPは
(9)	模擬輸送振動試験				•		•	TPクリック実験
(10)	TPクリック実験		•			•		▼ を行う必要はな く、RTPは必要で
(11)	TP描画実験	•	•		•	•		ある。
(12)	落下実験	•	•	•	•	•	•	
(13)	塩霧実験	•	•	•	•	•	•	
(14)	TP分離実験	•			•			

信賴性管理項目

编号	実験項目	実験方法	実験条件	数量	検査基準
(1)	冷熱サイクル衝撃試験	モジュールは点灯、冷熱交互環境中で保存耐久性試験る.	-20℃(30 Min)(30 Min)10サイクル		2 pcs室温が2 H回復した後に試験を行 い、機能は正常である
(2)	高温高湿動作	高温高湿環境中でモジュールを点灯させて耐久性実験を行う。	60℃, 90%RH, 120h		実験が完了した時、直接検査して表示機能は正常(点灯実験を行う)であるべきで、それから室温で2h回復してから試験機能試験を行うのは正常である;外観テ
(3)	高温動作	高温環境におけるモジュールの点灯による耐久性試験	70°C, 240h	2pcs	
(4)	低温動作	低温環境におけるモジュールの点灯による耐久性試験	-20°C, 240h]	
(5)	高温保存	高温環境における非点灯モジュール耐久性試験	80°C, 240h]	ストではムラなどの欠陥を含む外観不良 はありません。
(6)	低温保存	低温環境における非点灯モジュール耐久性試験	-30°C, 240h		
(7)	静電気試験	モジュールに対してESD空気放電試験を行い、製品の帯電防止能力 を測定する。	Voltage: ±8KV C:150PF,R:330Ω 空気放電10次	2pcs	試験後の機能試験は正常で、電流値IDD は試験前の2倍より大きくできない
(8)	電磁振動試験	電磁振動モードは製品の信頼性検査を行い、モジュールは直接振動 プラットフォームに固定され試験を行う	10 Hz振幅: 1.5 mm 1時間X、Y、Zの3方向はそれぞれ1時間	2pcs	機能試験を行うのが正常である、外観テストは正常である、製品部品の緩み脱落 がないこと
(9)	模擬輸送振動試験	模擬輸送及び使用中に振動モードの実験があり、モジュールは箱を 含めて組み立て、振動プラットフォームに固定して振幅を検証する:	振動幅: 25.4 mm回転速度: 00-220回転/min時間: 24時間 (包装状態で)	1カト ンボ以 上	機能試験は正常である、外観テストは正 常である、製品包装に緩み脱落がない
(10)	TPクリック実験	ペン先幅: R 4.20+/-0.2 mm、40-50°ショア硬度、受力: 150-250 g、 打点周波数: 2回/S、ペン先の材質: ポリホルムアルデヒド	T/PAAエリアのクリック数は計100万回 (セグメントごとに50万、80万、100万回ずつ行い、セグメントごとに先にテストをOKしてから続けて行う)	2pcs	2TPテスト機能は正常である。
(11)	TPスクライブ実験	スクライブヘッド: R 0.8 mm、受力: 150-250 g、スクライブ頻度: 2回/S (往復2回) 、ヘッドの材質: ポリホルムアルデヒド、漕ぎ書き長さ: 35 mm、漕ぎ書き速度: 70 mm/s	T/PAAエリアスクライブ単膜: 2万回 (分割して検証する: 第1回はまず5000回までして、試験機能はOKしてから1万回までして、1.5万回、2万回。) 二重膜: 5-10万回 (分割して: 5万回、10万回、各段の機能はOKしてから、次にする)	2pcs	TP試験機能は正常である。
(12)	落下試験	モジュール用鋼球に対して自由落下: 高さ200 mm、170 gをモジュール表面に直接1回落下	モジュール用鋼球に対して自由落下: 高さ200 mm、170 gを モジュール表面に直接1回落下	2pcs	TP製品はTP破裂が現れてはならず、TP機能は正常である、モジュールLCDは破裂せず、液晶インク漏れ現象もなく、表示機能は正常
(13)	塩霧実験	モジュールステンレス鉄枠などの材料に対して塩霧耐久試験を行い、 製品の耐食性を検証するために用いた。	塩と水の比: 5%温度: 35°C時間: 24時間	2pcs	製品のステンレス鋼材料表面を検査し、 さびないことを実験に合格する
(14)	TP分離実験	3.5-4.0インチ: 変形量1.5 mm、低温-20℃24 H、高温70℃24 H、4.0-5. 寸: 変形量2.5 mm、低温-20℃24 H、高温70℃24 H、取り出して2 H放	1pcs	2 H放置後に点検し、階層化現象がないか 確認する。	

エージングプロセス

エージング工場面積: 1500平方メトロ

点灯エージングキャパ: 32K/D(24H), tact time: 12Hrs/time

エージング JIG

エージング棚

エージング工場

③デザイン及キャパシティ

技術能力一覧表

1.Module							
	LCD Size LCM Thickness LCM Brightness						Brightness
		Witl	n TP	Without TP(Min)	BL Side(Min)	With TP(Max)	Without TP(Max)
	0.96"-15.6"	RTP(Min)	CTP(Min)	1.5T	No Side	500cd/m2 1200cd	1200cd/m2
		2.5T	2.4T	1.31	140 Side	Suvcu/III2	12000d/III2

2.Bonding Capability						
LCD Size	LCD Thickness(Min)	IC Pitch (Min)	FPC Pitch (Min)			
0.96" – 15.6"	0.15mm(Array)	10μm	20μm			

3.Module Sample /Mass production L/T					
Drawing Period Samples' Making Period Mass Production's delivery					
2 working days 4 weeks		4 weeks			

5.Product working temperature				
Low Temperature(Operation&Stroage)	High Temperature(Operation&Stroage)			
-40°C	+90℃			

生産キャパシティ

Line	プロセス	日ごとのキャパ(K) (20Hr/D)	月ごとのキャパ(K) (20Hr/D*26/M)
LCD	前工程	3000	78000
LCD	後工程	3000	78000

Line	プロセス	日ごとのキャパ(K) (20Hr/D)	月ごとのキャパ(K) (20Hr/D*26/M)
	COG/FOG	90	2340
LCM	組立	90	2340
	全面貼り付け	40	1040

工場写真

自動貼り付けライン贴 Clean room:class1000

全面貼付けライン Clean room:class100

自動ボンティングライン Clean room:class1000

自動組立ライン Clean room:class1000

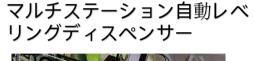
生産ラインの配置はカット、洗浄、ボンディング、貼り合わせ、組立の4つの工場に分けられており、ボンディング 工場は8本の全自動ラインがあります。主な設備は:カット機、洗浄機、全自動ボンディング機、端子洗浄機、COG、 FOG、AOI検査機、全自動ディスペンサー、全自動貼り合わせライン、自動組立機です。

工場写真

自動でガ ラスホッ トプレス 工場

ガラス 洗浄工場

スクリン印 刷及び張り 合わせ工場


スクリン印刷及 ディスペンサー 工場

生産装置

露光機(Exposure)、PIコーティング(PI Coating)、PIラビング機(PI Rubbing)などの重要なプロセス生産装置 及びパーツは全て日本製で日本から購入しています。

液晶注入機

マルチ自動カット機

エッチングライン

液晶洗浄機



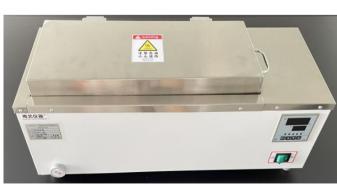
スクリン印刷機

露光機

ガラス投入洗浄機

検査及び測定装置

Scattered Light Measurement System



液晶デバイスパラメータ統合テスター、パネル 光電特性テスター、小角光拡散テスター (Small Angle Scattered Light Measurement System)、色番号均一性&角 度依存性テスター(Homogenity&Angle Dependence Measurement System)など、 液晶表示デバイスの技術パラメータを評価ため の各試験機器を完備。 ADF Measurement
System (AUTO DARKENING

光拡散テスター

恒温水槽加熱装置

パネル光電特性テスター

信頼性装置及びテスター

恒温恒湿機

振動シミュレーター

冷熱衝撃機

静電気測定器

高温試験装置

超低温試験装置

ROHS測定器

塩水噴霧試験装置

電磁垂直測定器

低温試験装置

精度測定器

RTPクリック測定装置 RTPスクライブ測定装置 二次元測定装置



Styray Instrument
FIDE THORSE

FEMALE SPECTROMETER

高倍顕微鏡

パーティクルカウンター

輝度測定機BM-7

UV強度測定器

水滴接触角試験機

温度測定器

LRC測定器

主な製品の紹介①

◆ 工業用制御、POS機、スマートホーム、車載、医療、家電などの分野への応用。

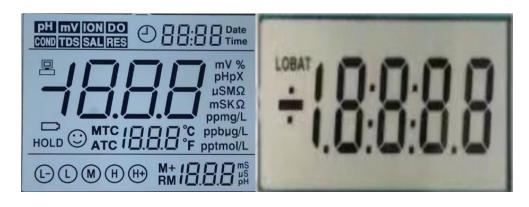
主な製品の紹介2

TN、HTN、STN、VA、LCD-shutter、GG-RTP

FSTN POSITIVE MODE STN YELLOW GREEN MODE

STN BLUE MODE

VA MODE



TN MODE

TN MODE

PMOLED

主な製品の紹介③

TN MODE

MIRROR LCD

FSTN POSITIVE

4 主な取引先及び仕入先

主なお取引先

中国大陸:

台湾&香港:

韓国:

日本:

主な材料の仕入先

TFT panelの仕入先

AMOLED panel の仕入先

PMOLED panel の仕入先

IC の仕入先

TP の仕入先

FPC の仕入先

BLU の仕入先

POL の仕入先

ITO の仕入先

LC の仕入先

